Domain-Splitting Generalized Nogoods from Restarts1

نویسندگان

  • Luís Baptista
  • Francisco Azevedo
چکیده

The use of restarts techniques associated with learning nogoods in solving Constraint Satisfaction Problems (CSPs) is starting to be considered of major importance for backtrack search algorithms. Recent developments show how to learn nogoods from restarts and that those nogoods are essential when using restarts. Using a backtracking search algorithm, with 2-way branching, generalized nogoods are learned from the last branch of the search tree, immediately before the restart occurs. In this paper we further generalized the learned nogoods but now using domain-splitting branching and set branching. We believe that the use of restarts and learning of domain-splitting generalized nogoods will improve backtrack search algorithms for certain classes of problems.

منابع مشابه

Nogoods in Qualitative Constraint-Based Reasoning

The prevalent method of increasing reasoning efficiency in the domain of qualitative constraint-based spatial and temporal reasoning is to use domain splitting based on so-called tractable subclasses. In this paper we analyze the application of nogood learning with restarts in combination with domain splitting. Previous results on nogood recording in the constraint satisfaction field feature le...

متن کامل

Using nogoods information from restarts in domain-splitting search

The use of restart techniques associated with learning nogoods in solving Constraint Satisfaction Problems (CSPs) is starting to be considered of major importance for backtrack search algorithms. In a backtracking search algorithm, with domain-splitting branching, nogoods can be learned from the last branch of the search tree, immediately before the restart occurs. This type of nogoods, named d...

متن کامل

A heuristic based on domain-splitting nogoods from restarts

Inspired by Boolean Satisfiability Problems (SAT), Constraint Satisfaction Problems (CSP) are starting to use restart techniques associated with learning nogoods widely. Recent developments show how to learn nogoods from restarts and that these nogoods are of major importance when solving a CSP. Using a backtracking search algorithm, with domain-splitting branching, nogoods are learned from the...

متن کامل

Generalized NoGoods in CSPs

Although nogood learning in CSPs and clause learning in SAT are formally equivalent, nogood learning has not been as successful a technique in CSP solvers as clause learning has been for SAT solvers. We show that part of the reason for this discrepancy is that nogoods in CSPs (as standardly defined) are too restrictive. In this paper we demonstrate that these restrictions can be lifted so that ...

متن کامل

Recording and Minimizing Nogoods from Restarts

In this paper1., nogood recording is investigated for CSP within the randomization and restart framework. Our goal is to avoid the same situations to occur from one run to the next ones. More precisely, nogoods are recorded when the current cutoff value is reached, i.e. before restarting the search algorithm. Such a set of nogoods is extracted from the last branch of the current search tree and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011